Tools:
Update via:
Anlagen - Energiesteuer-Durchführungsverordnung (EnergieStV)
Artikel 1 V. v. 31.07.2006 BGBl. I S. 1753 (Nr. 37); zuletzt geändert durch Artikel 1 V. v. 20.12.2024 BGBl. 2024 I Nr. 445
Geltung ab 04.08.2006; FNA: 612-20-1 Verbrauchsteuern und Monopole
|
Geltung ab 04.08.2006; FNA: 612-20-1 Verbrauchsteuern und Monopole
|
Anlagen
Anlage 1 (zu den §§ 55, 74 und 84a) Verzicht auf förmliche Einzelerlaubnis
Die Verwendung und die Verteilung von steuerfreien Energieerzeugnissen oder das Verbringen und die Ausfuhr aus dem Steuergebiet ist in den nachstehenden Fällen unter Verzicht auf eine förmliche Einzelerlaubnis allgemein erlaubt:
Nr. | a) Art des Energieerzeugnisses b) Personenkreis | Begünstigung | Voraussetzungen |
1 | a) Flüssiggase | ||
1.1 | a) Flüssiggase der Unterposition 2711 14 00 der Kombinierten Nomenklatur (KN) b) Verteiler, Verwender | Verteilung und Verwendung zu steuerfreien Zwecken nach § 25 Absatz 1 des Gesetzes, ausge- nommen zur Herstellung von Kraft- oder Heizstoffen | Jeder Lieferer hat die in die Hand des Empfängers übergehenden Rechnungen, Lieferscheine, Lie- ferverträge oder dergleichen mit folgendem Hinweis zu versehen: „Steuerfreies Energieerzeugnis! Darf nicht als Kraft- oder Heiz- stoff oder zur Herstellung solcher Stoffe verwendet werden!" |
1.2 | a) wie Nummer 1 b) Beförderer, Empfänger | Beförderung | nicht entleerbare Restmengen in Druckbehältern von Tankwagen, Kesselwagen und Schiffen |
2 | a) Spezialbenzine der Unterposi- tionen 2710 12 21 und 2710 12 25 und entspre- chende Erzeugnisse der Un- terpositionen 2707 10 bis 2707 30 und 2707 50 der KN; mittelschwere Öle der Position 2710 und entspre- chende Erzeugnisse der Un- terpositionen 2707 10 bis 2707 30 und 2707 50 der KN; Gasöle der Position 2710 der KN; Energieerzeugnisse der Unterpositionen 2901 10 und 2902 20 bis 2902 44 der KN; Energieerzeugnisse mit Pharmakopoe- oder Analy- senbezeichnung | ||
2.1 | a) wie Nummer 2 b) Verteiler, Verwender | Verteilung und Verwendung nach § 25 Absatz 1 des Gesetzes als Schmierstoffe (auch zur Her- stellung von Zweitaktergemi- schen), Formenöl, Stanzöl, Scha- lungs- und Entschalungsöl, Trennmittel, Gaswaschöl, Rostlö- sungs- und Korrosionsschutzmit- tel, Konservierungs- und Entkon- servierungsmittel, Reinigungsmit- tel, Bindemittel, Presswasserzu- satz, Imprägniermittel, Isolieröl und -mittel, Fußboden-, Leder- und Hufpflegemittel, Weichma- cher - auch zur Plastifizierung der Beschichtungsmassen von Farbschichtenpapier -, Saturie- rungs- und Schaumdämpfungs- mittel, Schädlingsbekämpfungs- und Pflanzenschutzmittel oder Trägerstoffe dafür, Vergüteöl, Materialbearbeitungsöl, Brünie- rungsöl, Wärmeübertragungsöl und Wärmeträgeröl, Hydrauliköl, Dichtungsschmieren, Tränköl, Schmälz-, Hechel- und Batschöl, Textil- und Lederhilfsmittel, Prüföl für Einspritzpumpen | Jeder Lieferer hat die in die Hand des Empfängers übergehenden Rechnungen, Lieferscheine, Lie- ferverträge oder dergleichen mit folgendem Hinweis zu versehen: "Steuerfreies Energieerzeugnis! Darf nicht als Kraft- oder Heiz- stoff oder zur Herstellung solcher Stoffe verwendet werden!" Bei Packungen für den Einzelver- kauf genügt der Hinweis auf den inneren Umschließungen. Er kann bei Packungen bis zu 5l oder 5 kg entfallen. |
2.2 | a) wie Nummer 2 b) Verteiler, Verwender | Verteilung und Verwendung zu anderen als den in Nummer 2.1 genannten, nach § 25 Absatz 1 des Gesetzes steuerfreien Zwe- cken, ausgenommen zur Herstel- lung von Kraft- oder Heizstoffen | Gasöl in Ampullen bis zu 250 ccm; andere in handelsübli- chen Behältern bis zu 220l Nenninhalt. Jeder Lieferer hat die in die Hand des Empfängers übergehenden Rechnungen, Lie- ferscheine, Lieferverträge oder dergleichen mit folgendem Hin- weis zu versehen: „Steuerfreies Energieerzeugnis! Darf nicht als Kraft- oder Heiz- stoff oder zur Herstellung solcher Stoffe verwendet werden!" Bei Packungen für den Einzelver- kauf genügt der Hinweis auf den inneren Umschließungen. Er kann bei Packungen bis zu 5l oder 5 kg entfallen. |
3 | a) Energieerzeugnisse nach § 27 Absatz 1 des Gesetzes und verflüssigtes Erdgas der Unterposition 2711 11 der KN | Verwendung für die Schifffahrt nach § 27 Absatz 1 Satz 1 Num- mer 1 des Gesetzes; auch bei In- standhaltungen nach § 27 Ab- satz 1 Satz 1 Nummer 2 des Ge- setzes; jeweils auch in Verbindung mit § 44 Absatz 2b des Gesetzes | |
3.1 | a) wie Nummer 3 b) Nutzungsberechtigte nach § 60 Absatz 3 | Verwendung in Wasserfahrzeu- gen ausschließlich zu den in Nummer 3 genannten Zwecken auf Meeresgewässern; ausge- nommen sind Wasserfahrzeuge der Position 8903 der KN und Wasserfahrzeuge der Position 8905 der KN, auf denen die in § 60 Absatz 1 Nummer 2 genannten Arbeitsmaschinen betrieben werden | Die Energieerzeugnisse müssen sich in Tankanlagen befinden, die mit dem Wasserfahrzeug fest verbunden sind. |
3.2 | a) wie Nummer 3 b) Nutzungsberechtigte nach § 60 Absatz 3; mit Ausnahme der Haupterwerbsfischer | Verwendung in Wasserfahrzeu- gen ausschließlich zu den in Nummer 3 genannten Zwecken auf Binnengewässern; ausge- nommen sind Wasserfahrzeuge der Position 8903 der KN und Wasserfahrzeuge der Position 8905 der KN, auf denen die in § 60 Absatz 1 Nummer 2 genannten Arbeitsmaschinen betrieben werden | Die Energieerzeugnisse müssen sich in Tankanlagen befinden, die mit dem Wasserfahrzeug fest verbunden sind. |
3.3 | a) wie Nummer 3 b) Bundeswehr sowie in- und ausländische Behördenschiffe | Verwendung für die Schifffahrt, ausschließlich für dienstliche Zwecke, ausgenommen sind Wasserfahrzeuge der Position 8905 der KN, auf denen die in § 60 Absatz 1 Nummer 2 genannten Arbeitsmaschinen betrieben werden | |
4 | a) Flugbenzin und Flugturbinen- kraftstoff nach § 27 Absatz 2 des Gesetzes | Verwendung für die Luftfahrt nach § 27 Absatz 2 Nummer 1 des Gesetzes, auch bei Instand- haltungen nach § 27 Absatz 2 Nummer 2 des Gesetzes | |
4.1 | a) wie Nummer 4 b) Nutzungsberechtigte nach § 60 Absatz 4 | Verwendung in Luftfahrzeugen mit einem Höchstgewicht von mehr als 12 t, ausschließlich zu den in Nummer 4 genannten Zwecken | Die Energieerzeugnisse müssen sich in Tankanlagen befinden, die mit dem Luftfahrzeug fest ver- bunden sind. |
4.2 | a) wie Nummer 4 b) Luftrettungsdienste | Verwendung für Primär- und Se- kundäreinsätze der Luftrettung | |
4.3 | a) wie Nummer 4 b) Bundeswehr sowie in- und ausländische Behörden | Verwendung für die Luftfahrt, ausschließlich für dienstliche Zwecke | |
5 | a) gasförmige Energieerzeugnisse nach § 28 Absatz 1 des Gesetzes b) Verteiler, Verwender | Verteilung und Verwendung zu steuerfreien Zwecken nach § 28 des Gesetzes | Jeder Lieferer hat die in die Hand des Empfängers übergehenden Rechnungen, Lieferscheine, Lie- ferverträge oder dergleichen mit folgendem Hinweis zu versehen: „Steuerfreies Energieerzeugnis! Darf nicht als Kraftstoff verwen- det werden, es sei denn, eine sol- che Verwendung ist nach dem Energiesteuergesetz oder der Energiesteuer-Durchführungsver- ordnung zulässig. Jede andere Verwendung als Kraftstoff hat steuer- und strafrechtliche Fol- gen! In Zweifelsfällen wenden Sie sich bitte an Ihr zuständiges Hauptzollamt." |
6 | a) Erdgas, das beim Kohleabbau aufgefangen wird b) Verwender | Verwendung zu steuerfreien Zwe- cken nach § 44 Absatz 2a des Gesetzes | |
7 | a) Heizöle der Position 2710 der KN b) Beförderer | Beförderung | Nicht entleerbare Restmengen (sog. Slops) in Tankschiffen. Die Restmengen sind unter der Be- zeichnung „Slop" im Schiffsbe- darfsbuch aufzuführen. Sie kön- nen bei den nach dem Kreislaufwirtschaftsgesetz genehmigten oder zugelas- senen Sammelstellen oder Abfall- entsorgungsanlagen abgeliefert werden. Die Empfangsbescheini- gung ist dem Schiffsbedarfsbuch beizufügen. Die Unterlagen sind den Bediensteten der Zollverwal- tung auf Verlangen vorzulegen. Das Verbringen aus dem Steuer- gebiet steht dem Abliefern gleich. |
8 | a) Kohle b) Verwender | Verwendung zu steuerfreien Zwe- cken nach § 37 Absatz 2 Satz 1 Nummer 1 des Gesetzes | Jeder Lieferer hat die in die Hand des Empfängers übergehenden Rechnungen, Lieferscheine, Lie- ferverträge oder dergleichen mit folgendem Hinweis zu versehen: „Steuerfreie Kohle! Darf nicht als Kraft- oder Heizstoff oder zur Herstellung solcher Stoffe ver- wendet werden!" |
9 | a) alle Energieerzeugnisse nach § 1 Absatz 2 und 3 des Geset- zes, ausgenommen Erdgas b) Verteiler, Verwender | Verwendung als Probe nach § 25 Absatz 2 oder § 37 Absatz 2 Satz 1 Nummer 5 des Gesetzes | |
10 | a) alle Energieerzeugnisse, die nach den Nummern 1 bis 5 im Rahmen einer allgemeinen Erlaubnis verteilt oder ver- wendet werden dürfen b) Verteiler, Verwender | Ausfuhr und Verbringen aus dem Steuergebiet | |
11 | a) alle Energieerzeugnisse nach § 4 des Gesetzes b) Verteiler, Verwender | thermische Vernichtung im Sinn des § 1b Absatz 2 |
Text in der Fassung des Artikels 2 Verordnung zur Anpassung des Energiesteuergesetzes und der Energiesteuer-Durchführungsverordnung an die Kombinierte Nomenklatur 2018 V. v. 26. Juni 2018 BGBl. I S. 888 m.W.v. 15. September 2018
Anlage 1a (aufgehoben)
Text in der Fassung des Artikels 1 Dritte Verordnung zur Änderung der Energiesteuer- und der Stromsteuer-Durchführungsverordnung V. v. 2. Januar 2018 BGBl. I S. 84, 126, 154 m.W.v. 1. Januar 2018
Anlage 2 (zu § 110 Satz 1 Nr. 7) Verfahren zur Bestimmung des Rotfarbstoffgehalts in leichtem Heizöl oder in Gemischen von leichtem Heizöl mit nicht gekennzeichnetem Gasöl mittels Hochdruckflüssigkeitschromatographie (HPLC-Verfahren)
1 Zweck und Anwendungsbereich
- Das HPLC-Verfahren dient der quantitativen Bestimmung der in § 2 Abs. 1 genannten Rotfarbstoffe in leichtem Heizöl und in Gemischen von leichtem Heizöl mit nicht gekennzeichneten Gasölen der Unterpositionen 2710 19 43 bis 2710 19 48 und der Unterpositionen 2710 20 11 bis 2710 20 19 der Kombinierten Nomenklatur.
2 Begriffsbestimmung
- Als Farbstoffgehalt der in Abschnitt 1 genannten Energieerzeugnisse gilt der nach dem nachstehend beschriebenen Verfahren ermittelte Gehalt an Farbstoffen.
3 Kurzbeschreibung des Verfahrens
- Die zu untersuchende Probe wird auf eine mit Kieselgel gefüllte Säule für die Hochdruckflüssigkeitschromatographie gegeben. Durch Elution mit einem Lösemittel werden die Farbstoffe von den anderen Bestandteilen der Probe getrennt und treten am Ende der Säule aus. Die Farbintensität dieser Lösung wird mit einem Spektralphotometer bei 535 nm gemessen. Die Auswertung erfolgt mit Hilfe eines Integrators.
4 Geräte
- 4.1
- Hochdruckflüssigkeitschromatographie-System, bestehend aus:
- 4.1.1
- Hochdruckpumpe,
- 4.1.2
- Injektionssystem mit Probenschleife 20µl bis 50µl,
- 4.1.3
- Vorsäule: Länge mindestens 30 mm, Innendurchmesser 4,0 mm oder 4,6 mm, gefüllt mit gebrochenem Kieselgel von 5 µm Korngröße,
- 4.1.4
- Trennsäule aus Stahl: Länge mindestens 100 mm, Innendurchmesser mindestens 4,0 mm, gefüllt mit sphärischem Kieselgel von 5 µm Korngröße,
- 4.1.5
- UV/VIS-Detektor für Messungen bei 535 nm,
- 4.1.6
- Integrator mit Schreiber und Einrichtung zur rechnergestützten Auswertung von Chromatogrammen,
4.3 10-ml-Vollpipette der Güteklasse AS, mit Konformitätszeichen.
5 Chemikalien
- 5.1
- Toluol, zur Analyse,
- 5.2
- n-Heptan, zur Analyse,
- 5.3
- Dichlormethan, zur Analyse,
- 5.4
- N-Ethyl-1-(4-phenylazophenylazo)naphthyl-2-amin (Standard-Farbstoff) *)
- 5.5
- Lösemittel zur Säulenregenerierung nach jeweiliger Vorschrift.
6 Vorbereitung
- 6.1
- Vorbereitung der Probe
Wasserhaltige Proben sind unter Verwendung von wasserfreiem Natriumsulfat zu entwässern. Verschmutzte Proben werden vor der Farbstoffgehaltsbestimmung filtriert. - 6.2
- Herstellung der Standard-Farbstofflösung
0,125g Standard-Farbstoff (vgl. Unterabschnitt 5.4) werden auf 0,0001g genau in den 250-ml-Messkolben eingewogen und nach dem Temperieren auf 20 Grad Celsius mit Toluol bis zur Ringmarke aufgefüllt. Von dieser Lösung werden mit der Vollpipette 10 ml in den 1.000-ml-Messkolben gegeben und mit Toluol bis zur Ringmarke aufgefüllt. Die Massenkonzentration an Farbstoff in dieser Lösung beträgt 5 mg/l. - 6.3
- Herstellung des Elutionsmittels
Als Elutionsmittel wird ein Gemisch aus vier Volumenteilen n-Heptan (vgl. Unterabschnitt 5.2) und einem Volumenteil Dichlormethan (vgl. Unterabschnitt 5.3) verwendet. - 6.4
- Vorbereitung der Säule
Zur Konditionierung lässt man durch die Säule bei einer Flussrate von 2 ml/min Elutionsmittel (vgl. Unterabschnitt 6.3) strömen. Die Konditionierung ist beendet, wenn bei drei aufeinander folgenden Messungen der Standard-Farbstofflösung (vgl. Unterabschnitt 6.2) die Retentionszeiten des Farbstoffs um nicht mehr als 5 Prozent vom Mittelwert abweichen. - 6.5
- Ermittlung des Flächenfaktors aus den Peakflächen der Chromatogramme des Standard-Farbstoffs
Der für die Berechnung des Farbstoffgehalts in den Proben erforderliche Faktor wird ermittelt, indem mit der Standard-Farbstofflösung (vgl. Unterabschnitt 6.2) drei Messungen unter den gleichen Bedingungen wie bei der späteren Messung der Proben durchgeführt werden. Aus den dabei erhaltenen Peakflächen für den Standard-Farbstoff bildet man den Mittelwert und berechnet den Faktor nach folgender Formel:
fs = Cs / As
Darin bedeuten:
fs = Flächenfaktor
Cs = Massenkonzentration der Standard-Farbstofflösung (5 mg/l)
As = Mittelwert der Peakfläche des Standard-Farbstoffs aus drei Messungen
7 Durchführung der Messung
- Die Probenschleife des Einlassventils der vorbereiteten Säule (vgl. Unterabschnitt 6.4) wird mit der Probe gefüllt. Durch Umschalten des Ventils wird die Probe auf die Säule gegeben. Gleichzeitig wird der Integrator gestartet. Die Flächenauswertung des Integrators ist so zu wählen, dass alle möglichen Farbstoffpeaks ausgewertet werden. Bei den zurzeit gesetzlich zugelassenen Farbstoffen können dies bis zu sieben Peaks sein. Dabei ist zu beachten, dass sowohl bei der Standard-Farbstofflösung als auch bei der zu untersuchenden Probe je nach Trennvermögen der Säule zuerst zwischen zwei bis fünf (beim Öl) Peaks auftreten, die auf den Toluol- oder Ölgehalt der Standard-Farbstofflösung oder der zu untersuchenden Probe zurückzuführen sind und nicht in die Auswertung durch den Integrator mit einbezogen werden dürfen. Nach Erscheinen des letzten Farbstoffpeaks, der vom Standard-Farbstoff hervorgerufen wird, ist die Messung beendet.
8 Auswertung
- Zur Auswertung wird die Flächensumme aller Farbstoffpeaks gebildet. Daraus berechnet man den Farbstoffgehalt in mg/l nach der folgenden Formel:
mg/l Farbstoff = Ap * fs
Darin bedeuten:
Ap = Flächensumme der Farbstoffpeaks
fs = Flächenfaktor nach Unterabschnitt 6.5
9 Angabe des Ergebnisses
- Der Farbstoffgehalt wird in mg/l auf 0,1 mg/l gerundet angegeben. Beim Runden auf die letzte anzugebende Stelle ist die DIN 1333 (Ausgabe Februar 1992) zu berücksichtigen.
10 Präzision des Verfahrens
- (nach DIN 51848 Teil I, Ausgabe Dezember 1981)
Wiederholbarkeit mg/l | Vergleichbarkeit mg/l |
0,1 | 0,2 |
---
- *)
- Über die Bezugsquellen gibt Auskunft: DIN-Bezugsquellen für normgerechte Erzeugnisse im DIN Deutsches Institut für Normung e.V., Burggrafenstraße 6, 10787 Berlin.
Text in der Fassung des Artikels 2 Verordnung zur Anpassung des Energiesteuergesetzes und der Energiesteuer-Durchführungsverordnung an die Kombinierte Nomenklatur 2018 V. v. 26. Juni 2018 BGBl. I S. 888 m.W.v. 15. September 2018
Anlage 3 (aufgehoben)
Text in der Fassung des Artikels 1 Vierte Verordnung zur Änderung der Energiesteuer- und der Stromsteuer-Durchführungsverordnung V. v. 20. Dezember 2024 BGBl. 2024 I Nr. 445 m.W.v. 1. Januar 2025
Anlage 4 (zu § 110 Satz 1 Nr. 9) Verfahren zur Bestimmung des Färbeäquivalents von Kennzeichnungsstoffen
Anlage 4 wird in 2 Vorschriften zitiert
Das Färbeäquivalent von Gemischen der in § 2 Abs. 1 genannten Rotfarbstoffe ist spektralphotometrisch durch Vergleich der Extinktionen in Toluol zu ermitteln. Äquivalenz liegt vor, wenn sich die Extinktionskurve des Farbstoffgemisches und die Extinktionskurve von 5g N-Ethyl-1-(4-phenylazophenylazo)-naphthyl-2-amin (Standard-Farbstoff) unter gleichen Messbedingungen im Maximum decken.
Anlage 5 (zu § 110 Satz 1 Nummer 11) Verfahren zur Bestimmung des Markierstoffs ACCUTRACE™ Plus (n-Butylphenylether) in leichtem Heizöl, Kerosin und in Mischungen von leichtem Heizöl mit nicht gekennzeichnetem Dieselkraftstoff mittels zweidimensionaler Gaschromatographie mit massenselektivem Detektor
1 Zweck und Anwendungsbereich
Diese Anlage enthält eine Methode zur Bestimmung des Wirkstoffs n-Butylphenylether (BPE, Butoxybenzol) in ACCUTRACE™ Plus in Gasöl und Kerosin. Sie ist für die Untersuchung von gekennzeichneten, niedrig besteuerten Mineralölen und Gemischen mit Dieselkraftstoff anzuwenden.
Der Markierstoff ist:
ACCUTRACE™ Plus bestehend aus etwa 24 % naphthenischen Kohlenwasserstoffen als Lösungsmittel und 76 % BPE (CAS #1126-79-0, EC# 214-426-1).
Abbildung 1: Strukturformel von n-Butylphenylether
Die Mitgliedstaaten legen einen Kennzeichnungsstoffgehalt von ACCUTRACE™ PLUS von mindestens 12,5 Milligramm pro Liter Energieerzeugnis fest. Dies entspricht einem Kennzeichnungsstoffgehalt von mindestens 9,5 Milligramm BPE pro Liter des Energieerzeugnisses.
2 Prinzip
Die Quantifizierung von BPE erfolgt durch zweidimensionale Gaschromatographie in Verbindung mit einem massenselektiven Detektor (MSD). Zu diesem Zweck wird die Probe in den Trägergasstrom injiziert, auf einer ersten, unpolaren Säule gaschromatographisch vorgetrennt und durch Flammenionisationsdetektion (FID) nachgewiesen. Zum Zeitpunkt der erwarteten Elution von BPE wird ein Teil des Eluenten auf eine zweite, polarere Säule umgeleitet (so genannter Heart-Cut), und BPE wird mittels Massenspektrometrie bei m/z = 94 und 150 (SIM-Modus) nachgewiesen und quantifiziert. Nach dem Heart-Cut kann der Trägergasstrom umgekehrt werden, und die hochsiedenden Komponenten werden durch den Injektor abgeleitet (sog. Backflush). Abbildung 2 zeigt ein Schema des 2D-Heart-Cut-Systems, das zur Bestimmung von BPE in Kraft- und Heizstoffen verwendet wird.
Abbildung 2: Schema des 2D Heart-Cut GC-MS-Systems für den Nachweis von BPE in Mineralölen
Grundsätzlich kann die Methode in zwei Varianten angewendet werden:
VERFAHREN A) Injektion der unverdünnten Probe und Quantifizierung mit externem Standard; und
VERFAHREN B) Quantifizierung nach aliquoter Verdünnung mit einer internen Standardlösung (ISTD).
Der ISTD ist ein am Phenylring deuteriertes BPE (d5-BPE, Abschnitt 3).
3 Reagenzien und Materialien
4 Analysengerät und Analysenparameter
Berechnen Sie die entsprechenden Druck- und Flusswerte mit einem PSD-Berechnungstool.
Besonderes Augenmerk ist auf die Länge des Heart-Cut-Zeitfensters zu richten (On-Off-Ventil des PSD). Überprüfen Sie die Heart-Cut-Parameter mindestens monatlich und auf jeden Fall nach jeder Veränderung am Gerät durch Injektion einer BPE-Lösung in Höhe von mindestens der höchsten Standardkonzentration in Xylol oder Toluol.
Eine Verschiebung der BPE-Retentionszeit oder eine Verschlechterung der Peakform (zum Beispiel Tailing) in der ersten Säule würde die Menge des in die zweite Säule geleiteten Analyten verringern, was zu einer Unterschätzung der BPE-Konzentration führen würde, wenn das Zeitfenster des PSD nicht entsprechend angepasst wird.
Anstelle von Helium kann auch Wasserstoff als Trägergas verwendet werden.
Tabelle 1: Beispielhafte Chromatographiebedingungen
5 Durchführung
Vorgehensweise:
Die Standardlösung 9 wird in unverdünntem Zustand als Kontrollprobe analysiert.
Die Proben sind ebenfalls unverdünnt zu analysieren.
Wenn die Kontrolle erfolgreich ist und kein Signal für BPE in der Probe vorliegt, kann die Probe als negativ angesehen werden und es ist keine weitere Analyse erforderlich.
Die Analyse der Kontrollprobe ist nach zehn unbekannten Proben zu wiederholen.
Stammlösung hat eine BPE-Konzentration von etwa 7500 mg/l.
Die Reinheit der Kalibriersubstanz gemäß dem Analysenzertifikat ist zu berücksichtigen.
Stammlösung II: 2000 µl der Stammlösung I werden in einen 100-ml-Messkolben überführt und bis zur
Markierung mit Diesel-B0 oder Diesel-B7 aufgefüllt. Diese Stammlösung hat eine BPE-Konzentration von etwa 150 mg/l.
Vor dem Auffüllen sind die Lösungen im Wasserbad (Abschnitt 4.5) mindestens für 30 Minuten auf 20 °C zu temperieren.
Die Einwaagen, Zielkonzentrationen und Endvolumina sind Richtwerte. Es muss eine gleichmäßige Verteilung der Konzentrationen der Standards über den Arbeitsbereich gewährleistet sein.
Tabelle 2: Verdünnungsreihe zur Herstellung der Standardlösungen
Vor dem Auffüllen sind die Mischungen im Wasserbad (Abschnitt 4.5) mindestens 30 Minuten lang auf 20 °C zu temperieren. Die Einwaagen, Zielkonzentrationen und Endvolumina sind Richtwerte.
Für die Routinekalibrierung ist die Verwendung von mindestens sechs Kalibrierpunkten (fett gedruckt) ausreichend. Die Kalibrierlösungen werden vor den Proben eingespritzt. Falls erforderlich, sind Mehrfachinjektionen der Standards möglich.
Die Ausweitung des Arbeitsbereichs durch zusätzliche Standards mit höheren BPE-Konzentrationen ist möglich. In diesem Fall ist zu prüfen, ob eine lineare Regression zulässig ist.
Die Kalibrierkurve wird durch den Koordinatenursprung gezwungen.
Alternativ kann die ISTD-Lösung III durch eine so genannte 2-Lagen-Sandwich-Injektion zur unverdünnten Probe im Probengebermodul des GC zugegeben werden, vorzugsweise unter Verwendung eines kleinen Gesamtinjektionsvolumens und einer entsprechend angepassten Injektionsspritze.
Die Reinheit der Kalibriersubstanz gemäß dem Analysenzertifikat ist zu berücksichtigen.
ISTD-Stammlösung II: 1000 µl der ISTD-Stammlösung I werden in einen 50-ml-Messkolben überführt und bis zur Marke mit Xylol (3.3) aufgefüllt. Diese Stammlösung hat eine d5-BPE-Konzentration von etwa 100 mg/l.
ISTD-Stammlösung III: 2000 µl der ISTD-Stammlösung II werden in einen 100-ml-Kolben überführt und bis zur Marke mit Xylol (3.3) aufgefüllt. Diese Stammlösung hat eine d5-BPE-Konzentration von etwa 2 mg/l.
Vor dem Auffüllen sind die Mischungen mindestens 30 Minuten lang im Wasserbad (Abschnitt 4.6) auf 20 °C zu temperieren.
Für die Routinekalibrierung ist die Verwendung von mindestens sechs Kalibrierlösungen (fett gedruckt) ausreichend. Die Kalibrierlösungen werden vor den Proben eingespritzt. Falls erforderlich, sind Mehrfachinjektionen der Standards möglich.
Die Kalibrierkurve wird durch den Koordinatenursprung gezwungen.
VERFAHREN A):
Die Kalibrierkurve wird erstellt, indem die Fläche des zu quantifizierenden Ions (m/z = 94) des BPE-Peaks in jedem Standardchromatogramm gegen die genaue Konzentration des jeweiligen Standards in mg/l aufgetragen wird. Es wird eine lineare Regression mit erzwungenem Nulldurchgang angewandt.
Berechnen Sie die Konzentration X (mg/l) von BPE in der Probe anhand der linearen Gleichung:
x = Y / a
mit
a = Steigung der Regressionsgeraden
Y = Fläche des zu quantifizierenden Ions des BPE (m/z = 94) im Chromatogramm der Probe
VERFAHREN B):
Die Kalibrierkurve wird konstruiert, indem das Verhältnis der Fläche des quantifizierenden Ions (m/z = 94) des BPE-Peaks zur Fläche des quantifizierenden Ions des d5-BPE-Peaks (m/z = 99) in jedem Standardchromatogramm gegen die genaue Konzentration des jeweiligen Standards in mg/l aufgetragen wird. Es wird eine lineare Regression mit erzwungenem Nulldurchgang angewandt. Mit Hilfe der Regressionsgerade wird die Konzentration der Probe in mg/l bestimmt. Berechnen Sie die Konzentration X (mg/l) von BPE in der Probe anhand der linearen Gleichung:
x = Y' / a
mit
a = Steigung der Regressionsgeraden
Y' = Verhältnis der Fläche des zu quantifizierenden Ions des BPE (m/z = 94) zur Fläche des zu quantifizierenden Ions des Peaks des d5-BPE (m/z = 99) im Chromatogramm der Probe
Führen Sie die Kalibrierung regelmäßig (mindestens alle zwei Wochen) und nach jeder Änderung am Gerät (z. B. MSD-Tuning, Wechsel des Liners, Änderung des Heart-Cut-Zeitfensters) oder im Falle eines Qualitätskontrollfehlers durch.
Qualitätssichernde Maßnahmen:
Nach jeder Kalibrierung werden eine n-Heptan- oder Toluol-Leerwertprobe und die Kontrollproben (5.3.2) analysiert. Nach der Messung von zehn Proben (als Doppelbestimmung) sind die Leer- und Kontrollproben erneut zu vermessen. Die Ergebnisse sind in Regelkarten zu verzeichnen. Wiederholen Sie die Kalibrierung, wenn die Qualitätskontrolle versagt oder ein Trend über mehr als sieben Messungen vorliegt.
Die quantitative Auswertung ist nur zulässig, wenn die Signale von BPE und d5-BPE nicht gestört sind und das Verhältnis des Molekularpeaks zum Basispeak im erwarteten Bereich liegt (Qualifier-Ion).
6 Ergebnisangabe
Der Gehalt an Kennzeichnungsstoffen wird als Massenkonzentration in mg/l angegeben. Bei Massenkonzentrationen ≤ 1,00 mg/l erfolgt die Ergebnisangabe auf 0,01 mg/l gerundet, oberhalb von 1,00 mg/l auf 0,1 mg/l gerundet.
Beim Runden auf die letzte anzugebende Stelle ist DIN 1333 zu berücksichtigen.
7 Präzision
Diese Werte sind nach dem IUPAC-Verfahren durch mindestens zehnmalige Messung einer Probe mit einer bekannten niedrigen Konzentration und Multiplikation der Standardabweichung mit 3 bzw. 10 zu schätzen. Die Werte in Tabelle 3 sind Richtwerte, die mit einem modernen MSD erreicht werden können.
Tabelle 3: Nachweis- und Bestimmungsgrenze
Die Verwendung des ISTD hat keinen signifikanten Einfluss auf die Nachweis- und Bestimmungsgrenze.
Tabelle 4: Wiederhol- und Vergleichbarkeit sowie Vorhersage nach Horwitz
Bei der Messung von Proben mit ISTD dominiert das Lösemittelsignal von Xylol das FID-Chromatogramm.
Abbildung 4: Total-Ionen-Chromatogramm des MSD (BPE ca. 0,1 mg/l, nicht genutzt für die Quantifizierung)
Abbildung 5: SIM-Spuren des MSD bei einer BPE-Konzentration von 0,12 mg/l (mit ISTD)
Abbildung 6: Typische Routinekalibriergerade mit ISTD
- 1.1
- Einleitung und Hinweise
Diese Anlage enthält eine Methode zur Bestimmung des Wirkstoffs n-Butylphenylether (BPE, Butoxybenzol) in ACCUTRACE™ Plus in Gasöl und Kerosin. Sie ist für die Untersuchung von gekennzeichneten, niedrig besteuerten Mineralölen und Gemischen mit Dieselkraftstoff anzuwenden.
Der Markierstoff ist:
ACCUTRACE™ Plus bestehend aus etwa 24 % naphthenischen Kohlenwasserstoffen als Lösungsmittel und 76 % BPE (CAS #1126-79-0, EC# 214-426-1).
Abbildung 1: Strukturformel von n-Butylphenylether
Die Mitgliedstaaten legen einen Kennzeichnungsstoffgehalt von ACCUTRACE™ PLUS von mindestens 12,5 Milligramm pro Liter Energieerzeugnis fest. Dies entspricht einem Kennzeichnungsstoffgehalt von mindestens 9,5 Milligramm BPE pro Liter des Energieerzeugnisses.
- 1.2
- Anwendungsbereich
2 Prinzip
Die Quantifizierung von BPE erfolgt durch zweidimensionale Gaschromatographie in Verbindung mit einem massenselektiven Detektor (MSD). Zu diesem Zweck wird die Probe in den Trägergasstrom injiziert, auf einer ersten, unpolaren Säule gaschromatographisch vorgetrennt und durch Flammenionisationsdetektion (FID) nachgewiesen. Zum Zeitpunkt der erwarteten Elution von BPE wird ein Teil des Eluenten auf eine zweite, polarere Säule umgeleitet (so genannter Heart-Cut), und BPE wird mittels Massenspektrometrie bei m/z = 94 und 150 (SIM-Modus) nachgewiesen und quantifiziert. Nach dem Heart-Cut kann der Trägergasstrom umgekehrt werden, und die hochsiedenden Komponenten werden durch den Injektor abgeleitet (sog. Backflush). Abbildung 2 zeigt ein Schema des 2D-Heart-Cut-Systems, das zur Bestimmung von BPE in Kraft- und Heizstoffen verwendet wird.
Abbildung 2: Schema des 2D Heart-Cut GC-MS-Systems für den Nachweis von BPE in Mineralölen
Grundsätzlich kann die Methode in zwei Varianten angewendet werden:
VERFAHREN A) Injektion der unverdünnten Probe und Quantifizierung mit externem Standard; und
VERFAHREN B) Quantifizierung nach aliquoter Verdünnung mit einer internen Standardlösung (ISTD).
Der ISTD ist ein am Phenylring deuteriertes BPE (d5-BPE, Abschnitt 3).
3 Reagenzien und Materialien
- 3.1
- n-Heptan (für die Chromatographie, Reinheit = 99 %,)
- 3.2
- Toluol (für die Chromatographie, Reinheit = 99,9 %)
- 3.3
- Xylol-Isomerengemisch oder o-Xylol (für die Chromatographie, Reinheit = 98 %)
- 3.4
- BPE (Reinheit = 99 %)
- 3.5
- d5-BPE (Reinheit = 98 %)
- 3.6
- Gasöl mit und ohne Biodiesel (zum Beispiel DK-B0 und DK-B7)
4 Analysengerät und Analysenparameter
- 4.1
- Gaschromatograph mit automatischem Probengeber, Split-Splitless-Einlass (SSL) oder temperaturprogrammierbarem Einlasssystem (PTV), Pneumatikschaltmodul (PSD), Flammenionisationsdetektor (FID) und massenselektivem Detektor (MSD) mit Ionenextraktor- oder vergleichbarer Elektronenstoßionisationsquelle
- 4.2
- Personalcomputer mit Software für Datenaufnahme und -auswertung
- 4.3
- Standardlaborglasgeräte
- 4.4
- Analysenwaage (mit mindestens 4 Nachkommastellen)
- 4.5
- Wasserbad (thermostatisierbar auf 20 ± 0,2 °C)
- 4.6
- Mikropipetten (zur Herstellung von Standards und gegebenenfalls Verdünnung mit ISTD-Lösung)
- 4.7
- Chromatographiebedingungen
Berechnen Sie die entsprechenden Druck- und Flusswerte mit einem PSD-Berechnungstool.
Besonderes Augenmerk ist auf die Länge des Heart-Cut-Zeitfensters zu richten (On-Off-Ventil des PSD). Überprüfen Sie die Heart-Cut-Parameter mindestens monatlich und auf jeden Fall nach jeder Veränderung am Gerät durch Injektion einer BPE-Lösung in Höhe von mindestens der höchsten Standardkonzentration in Xylol oder Toluol.
Eine Verschiebung der BPE-Retentionszeit oder eine Verschlechterung der Peakform (zum Beispiel Tailing) in der ersten Säule würde die Menge des in die zweite Säule geleiteten Analyten verringern, was zu einer Unterschätzung der BPE-Konzentration führen würde, wenn das Zeitfenster des PSD nicht entsprechend angepasst wird.
Anstelle von Helium kann auch Wasserstoff als Trägergas verwendet werden.
Modul | Parameter | Wert für SSL-Einlass | Wert für PTV- oder SSL-Einlass |
Probengeber | Injektionsvolumen: | 1 µl (10 µl Spritze) mit 0,2 µl Luftpolster | 0,2 µl (1 µl Spritze) mit 0,02 µl Luftpolster |
Lösungsmittelreinigungs- zyklen: | 2 mal 8 µl vor und 5 mal 4 µl nach der Injektion | 2 mal 0,8 µl vor und 5 mal 0,4 µl nach der Injektion | |
Probenspülzyklen: | 2 mal mit 2 µl Probe | 2 mal mit 0,4 µl Probe | |
Reinigungslösungsmittel: | Toluol | ||
Viscositätsverzögerung: | 2 s | ||
Aufziehgeschwindigkeit: | Lösungsmittel 300 µl/min; Probe 100 µl/min | ||
Abgabegeschwindigkeit: | 3000 µl/min | ||
Injektionsgeschwindigkeit: | 6000 µl/min | ||
Einlass- system | Liner: | Ultra-inert (900 µl, split/splitless, single taper, glass wool) | |
Temperatur: | 250 °C oder 300 °C | 300 °C und bis 400 °C nach Heart Cut | |
Einlass- system | Splitverhältnis: | 50:1 (mit ISTD), 100:1 (ohne ISTD) | 5:1 (mit ISTD), 10:1 (ohne ISTD) |
Anpassung des Splitverhältnisses aufgrund der Verdünnung mit ISTD | |||
Trägergas: | Helium (104 ml/min, Gas Saver nach 3 min) | ||
Septumspülung: | 3 ml/min |
Modul | Parameter | Konfiguration 1 (SSL-Inlet und Backflush) | Konfiguration 2 (SSL- oder PTV-Inlet mit und ohne Backflush) |
Kapillar- säulen | Vorsäule: | ohne | zum Beispiel deaktivierte Vorsäule (L: 5 m, ID: 0,25 mm) |
1. Säule: | unpolare Kapillarsäule, zum Beispiel DB-17HT (L: 15 m, ID: 0,25 mm, Film 0,15 µm) | unpolare Kapillarsäule, zum Beispiel DB-1HT (L: 15 m, ID: 0,25 mm, Film 0,1 µm) | |
2. Restriktor zum FID: | zum Beispiel Leerkapillare (L: 0,64 m, ID: 0,1 mm) | zum Beispiel Leerkapillare (L: 0,68 m, ID: 0,1 mm) | |
3. Säule: | Kapillarsäule mit polarer Phase (L: 30 m, ID: 0,25 mm, Film 1,0 µm) | Kapillarsäule mit polarer Phase (L: 30 m, ID: 0,25 mm, Film 0,2 µm) | |
Säulenfluss- raten | 1. Säule: | 1 ml/min für 5,15 min, dann -1 ml/min bis 15,167 min (Backflush) | 1,075 ml/min für 4,3 min, dann -3 ml/min bis 15 min (nur für Backflush) |
2. Restriktor zum FID: | 2,5 ml/min | 2,5 ml/min | |
3. Säule: | Flusskontrolle via 2. Säule (2,34 ml/min) | Flusskontrolle via 2. Säule (2,48 ml/min) | |
Säulenofen | 100 °C für 0,5 min, 10 °C/min bis 180 °C, 30 °C/min bis 260 °C, 260 °C halten für 4 min; Gesamtzeit: 15,167 min | 100 °C für 1 min, 5 °C/min bis 125 °C, 100 °C/min bis 260 °C, 260 °C halten für 7,65 min; Gesamtlaufzeit: 15 min oder ohne Backflush: 260 °C halten für 3 min, 10 °C/min bis 290 °C, 290 °C halten für 6,65 min; Gesamtzeit: 20 min | |
PSD/ Heart Cut | Ventil auf: | 4,94 min | 4,00 min |
Ventil zu: | 5,07 min | 4,20 min | |
Bestimmt und regelmäßig überprüft mit BPE-Lösung auf dem Niveau von mindestens der höchsten Standardkonzentration in Xylol oder Toluol | |||
FID | Temperatur: | 285 °C | |
Air Flow: | 400 ml/min | ||
H2-Flow: | 40 ml/min | ||
Makeup (N2)-Flow: | 25 ml/min | ||
Datenrate: | 20 Hz | ||
MSD | Transfer-Line-Temperatur: | 260 °C | |
EI-Quellentemperatur: | 230 °C | ||
Quadrupoltemperatur: | 150 °C | ||
Verstärkungsfaktor: | 1,0 | ||
SIM Ionen BPE: | m/z = 94 and 150 (Quantifier and Qualifier) | ||
SIM Ionen d5-BPE: | m/z = 99 and 155 m/z (Quantifier and Qualifier) | ||
Dwell-Time: | 100 ms each | ||
Scanrate: | 1,562 u/s | ||
Detektor an: | 8,0 min | 6,1 min | |
Detektor aus: | 9,5 min | 7,6 min |
Tabelle 1: Beispielhafte Chromatographiebedingungen
5 Durchführung
- 5.1
- Allgemeines
- 5.2
- Voruntersuchung
Vorgehensweise:
Die Standardlösung 9 wird in unverdünntem Zustand als Kontrollprobe analysiert.
Die Proben sind ebenfalls unverdünnt zu analysieren.
Wenn die Kontrolle erfolgreich ist und kein Signal für BPE in der Probe vorliegt, kann die Probe als negativ angesehen werden und es ist keine weitere Analyse erforderlich.
Die Analyse der Kontrollprobe ist nach zehn unbekannten Proben zu wiederholen.
- 5.3
- VERFAHREN A): Analyse ohne Zusatz eines internen Standards
- 5.3.1
- Probenvorbereitung für die Quantifizierung
- 5.3.2
- Kontrollproben
- 5.3.3
- Standardlösungen mit BPE
- 5.3.3.1
- Stammlösungen
Stammlösung hat eine BPE-Konzentration von etwa 7500 mg/l.
Die Reinheit der Kalibriersubstanz gemäß dem Analysenzertifikat ist zu berücksichtigen.
Stammlösung II: 2000 µl der Stammlösung I werden in einen 100-ml-Messkolben überführt und bis zur
Markierung mit Diesel-B0 oder Diesel-B7 aufgefüllt. Diese Stammlösung hat eine BPE-Konzentration von etwa 150 mg/l.
Vor dem Auffüllen sind die Lösungen im Wasserbad (Abschnitt 4.5) mindestens für 30 Minuten auf 20 °C zu temperieren.
Die Einwaagen, Zielkonzentrationen und Endvolumina sind Richtwerte. Es muss eine gleichmäßige Verteilung der Konzentrationen der Standards über den Arbeitsbereich gewährleistet sein.
- 5.3.3.2
- Standardlösungen
Standard- lösung | Zielkonzentration [mg/l] | Verdünnt aus BPE-Stamm-/Standardlösung | Volumen BPE-Stamm-/Standard [ml] | Endvolumen [ml] |
1 | 15,000 | Stammlösung II | 10 | 100 |
2 | 10,5000 | Stammlösung II | 7 | 100 |
3 | 7,5000 | Stammlösung II | 5 | 100 |
4 | 3,7500 | Stammlösung II | 2,5 | 100 |
5 | 1,0500 | Standardlösung 2 | 10 | 100 |
6 | 0,5250 | Standardlösung 2 | 5 | 100 |
7 | 0,2100 | Standardlösung 2 | 2 | 100 |
8 | 0,1050 | Standardlösung 5 | 10 | 100 |
9 | 0,0525 | Standardlösung 5 | 5 | 100 |
10 | 0,0210 | Standardlösung 5 | 2 | 100 |
Tabelle 2: Verdünnungsreihe zur Herstellung der Standardlösungen
Vor dem Auffüllen sind die Mischungen im Wasserbad (Abschnitt 4.5) mindestens 30 Minuten lang auf 20 °C zu temperieren. Die Einwaagen, Zielkonzentrationen und Endvolumina sind Richtwerte.
Für die Routinekalibrierung ist die Verwendung von mindestens sechs Kalibrierpunkten (fett gedruckt) ausreichend. Die Kalibrierlösungen werden vor den Proben eingespritzt. Falls erforderlich, sind Mehrfachinjektionen der Standards möglich.
Die Ausweitung des Arbeitsbereichs durch zusätzliche Standards mit höheren BPE-Konzentrationen ist möglich. In diesem Fall ist zu prüfen, ob eine lineare Regression zulässig ist.
Die Kalibrierkurve wird durch den Koordinatenursprung gezwungen.
- 5.4
- VERFAHREN B): Bestimmung mit Zusatz des internen Standards
- 5.4.1
- Probenvorbereitung für die Quantifizierung
Alternativ kann die ISTD-Lösung III durch eine so genannte 2-Lagen-Sandwich-Injektion zur unverdünnten Probe im Probengebermodul des GC zugegeben werden, vorzugsweise unter Verwendung eines kleinen Gesamtinjektionsvolumens und einer entsprechend angepassten Injektionsspritze.
- 5.4.2
- Kontrollproben
- 5.4.3
- Interne Standardlösung mit d5-BPE in Xylol
Die Reinheit der Kalibriersubstanz gemäß dem Analysenzertifikat ist zu berücksichtigen.
ISTD-Stammlösung II: 1000 µl der ISTD-Stammlösung I werden in einen 50-ml-Messkolben überführt und bis zur Marke mit Xylol (3.3) aufgefüllt. Diese Stammlösung hat eine d5-BPE-Konzentration von etwa 100 mg/l.
ISTD-Stammlösung III: 2000 µl der ISTD-Stammlösung II werden in einen 100-ml-Kolben überführt und bis zur Marke mit Xylol (3.3) aufgefüllt. Diese Stammlösung hat eine d5-BPE-Konzentration von etwa 2 mg/l.
Vor dem Auffüllen sind die Mischungen mindestens 30 Minuten lang im Wasserbad (Abschnitt 4.6) auf 20 °C zu temperieren.
- 5.4.4
- Standardlösungen mit BPE
Für die Routinekalibrierung ist die Verwendung von mindestens sechs Kalibrierlösungen (fett gedruckt) ausreichend. Die Kalibrierlösungen werden vor den Proben eingespritzt. Falls erforderlich, sind Mehrfachinjektionen der Standards möglich.
Die Kalibrierkurve wird durch den Koordinatenursprung gezwungen.
- 5.5
- Kalibrierung und Berechnung
VERFAHREN A):
Die Kalibrierkurve wird erstellt, indem die Fläche des zu quantifizierenden Ions (m/z = 94) des BPE-Peaks in jedem Standardchromatogramm gegen die genaue Konzentration des jeweiligen Standards in mg/l aufgetragen wird. Es wird eine lineare Regression mit erzwungenem Nulldurchgang angewandt.
Berechnen Sie die Konzentration X (mg/l) von BPE in der Probe anhand der linearen Gleichung:
x = Y / a
mit
a = Steigung der Regressionsgeraden
Y = Fläche des zu quantifizierenden Ions des BPE (m/z = 94) im Chromatogramm der Probe
VERFAHREN B):
Die Kalibrierkurve wird konstruiert, indem das Verhältnis der Fläche des quantifizierenden Ions (m/z = 94) des BPE-Peaks zur Fläche des quantifizierenden Ions des d5-BPE-Peaks (m/z = 99) in jedem Standardchromatogramm gegen die genaue Konzentration des jeweiligen Standards in mg/l aufgetragen wird. Es wird eine lineare Regression mit erzwungenem Nulldurchgang angewandt. Mit Hilfe der Regressionsgerade wird die Konzentration der Probe in mg/l bestimmt. Berechnen Sie die Konzentration X (mg/l) von BPE in der Probe anhand der linearen Gleichung:
x = Y' / a
mit
a = Steigung der Regressionsgeraden
Y' = Verhältnis der Fläche des zu quantifizierenden Ions des BPE (m/z = 94) zur Fläche des zu quantifizierenden Ions des Peaks des d5-BPE (m/z = 99) im Chromatogramm der Probe
Führen Sie die Kalibrierung regelmäßig (mindestens alle zwei Wochen) und nach jeder Änderung am Gerät (z. B. MSD-Tuning, Wechsel des Liners, Änderung des Heart-Cut-Zeitfensters) oder im Falle eines Qualitätskontrollfehlers durch.
Qualitätssichernde Maßnahmen:
Nach jeder Kalibrierung werden eine n-Heptan- oder Toluol-Leerwertprobe und die Kontrollproben (5.3.2) analysiert. Nach der Messung von zehn Proben (als Doppelbestimmung) sind die Leer- und Kontrollproben erneut zu vermessen. Die Ergebnisse sind in Regelkarten zu verzeichnen. Wiederholen Sie die Kalibrierung, wenn die Qualitätskontrolle versagt oder ein Trend über mehr als sieben Messungen vorliegt.
Die quantitative Auswertung ist nur zulässig, wenn die Signale von BPE und d5-BPE nicht gestört sind und das Verhältnis des Molekularpeaks zum Basispeak im erwarteten Bereich liegt (Qualifier-Ion).
6 Ergebnisangabe
Der Gehalt an Kennzeichnungsstoffen wird als Massenkonzentration in mg/l angegeben. Bei Massenkonzentrationen ≤ 1,00 mg/l erfolgt die Ergebnisangabe auf 0,01 mg/l gerundet, oberhalb von 1,00 mg/l auf 0,1 mg/l gerundet.
Beim Runden auf die letzte anzugebende Stelle ist DIN 1333 zu berücksichtigen.
7 Präzision
- 7.1
- Arbeitsbereich
- 7.2
- Nachweis- und Bestimmungsgrenze
Diese Werte sind nach dem IUPAC-Verfahren durch mindestens zehnmalige Messung einer Probe mit einer bekannten niedrigen Konzentration und Multiplikation der Standardabweichung mit 3 bzw. 10 zu schätzen. Die Werte in Tabelle 3 sind Richtwerte, die mit einem modernen MSD erreicht werden können.
VERFAHREN A) ohne ISTD [mg/l] | VERFAHREN B) mit ISTD [mg/l] | |
Nachweisgrenze (LOD) | 0,009 | 0,011 |
Bestimmungsgrenze (LOQ) | 0,031 | 0,036 |
Tabelle 3: Nachweis- und Bestimmungsgrenze
Die Verwendung des ISTD hat keinen signifikanten Einfluss auf die Nachweis- und Bestimmungsgrenze.
- 7.3
- Wiederholbarkeit und Vergleichbarkeit
VERFAHREN A) ohne ISTD [mg/l] | VERFAHREN B) mit ISTD [mg/l] | |
Wiederholbarkeit (r) | r = 0,036 X + 0,048 | r = 0,0363 X - 0,0124 |
Vergleichbarkeit (R) | R = 0,121 X + 0,055 | R = 0,0893 X + 0,042 |
Horwitz-Vergleichbarkeit | RHorw = 0,0778 X + 0,0235 |
Tabelle 4: Wiederhol- und Vergleichbarkeit sowie Vorhersage nach Horwitz
- 8.
- Anhang
- 8.1
- Anhang 1: Chromatogramme
Bei der Messung von Proben mit ISTD dominiert das Lösemittelsignal von Xylol das FID-Chromatogramm.
Abbildung 4: Total-Ionen-Chromatogramm des MSD (BPE ca. 0,1 mg/l, nicht genutzt für die Quantifizierung)
Abbildung 5: SIM-Spuren des MSD bei einer BPE-Konzentration von 0,12 mg/l (mit ISTD)
Abbildung 6: Typische Routinekalibriergerade mit ISTD
Text in der Fassung des Artikels 3 Verordnung zur Änderung der Energiesteuer- und Stromsteuer-Transparenzverordnung sowie weiterer Verordnungen V. v. 14. Dezember 2023 BGBl. 2023 I Nr. 367 m.W.v. 1. Januar 2024
Link zu dieser Seite: https://www.buzer.de/gesetz/7310/b25068.htm